Passer commande via notre portail client

Partager cet article ...Print this pageEmail this to someoneTweet about this on TwitterShare on FacebookShare on Google+Share on LinkedInPin on PinterestShare on TumblrDigg this
La modélisation en étoile, conception et mise en œuvre
AMT / LI-MOA-040
OBJECTIFS PEDAGOGIQUES
Ce cours, construit autour de nombreux cas pratiques, vous donnera une idée précise de la démarche de modélisation en étoile dans le cadre du projet Data Warehouse. Vous verrez pourquoi elle est l’expression même du besoin de la maîtrise d’ouvrage et comment elle permet de faire converger la vision des opérationnels, des analystes et des pilotes sur les activités de l’entreprise.

PUBLIC
Maîtres d’ouvrage et maîtres d’œuvre, responsables des systèmes décisionnels, responsables informatiques, responsables des études, architectes de systèmes d’information, chefs de projets.
PRE-REQUIS
Connaissances de base de l’analyse décisionnelle et des SGBD relationnelles.

CONTENU

Introduction et rappels
- Qu’est-ce qu’un système d’information décisionnel ?
- Evolution des exigences de décision dans le contexte actuel.
- Infocentres, SIAD, EIS, Data Warehouse, définition et positionnement.
- Comprendre la finalité de l’approche Data Warehouse.

Les architectures en réponse aux besoins décisionnels
- Les composants principaux, Data Warehouse, ODS ou “staging area”, datamarts.
- Les architectures proposées par Kimball et Inmon. Avantages et inconvénients.
- Positionnement du modèle en étoile dans le Data Warehouse selon l’architecture.
- Les phases du cycle de vie d’un Data Warehouse.
- Les critères de qualité d’un Data Warehouse.
- La notion de métadonnée, de référentiel.

Principes et définitions de base sur la modélisation en étoile
- Rappels sur la modélisation des bases de données opérationnelles.
- Différences entre OLTP et OLAP.
- Entités, attributs, cardinalités, formes normales.
- Le principe de la dénormalisation pour concevoir un modèle en étoile.
- Comprendre les notions de fait, dimension et axe d’analyse.
- Les alternatives de modélisation : modèle en flocon, en galaxie.
- Les règles et bonnes pratiques de modélisation en étoile. Proposition alternative de Kortink et Moody.

Conception du modèle en étoile
- Organisation et synthèse des interviews utilisateur pour le recueil du besoin.
- Compréhension et identification des processus métiers à modéliser.
- Choix des dimensions d’analyse.
- Création de hiérarchies dans les dimensions.
- Identification des mesures et croisements avec les dimensions.
- Définition de la granularité de l’analyse.
- Définition des règles d’agrégation.
- Utilisation d’outils de modélisation.

Optimisation fonctionnelle du modèle en étoile
- Gestion de l’évolution des référentiels et du changement des nomenclatures.
- Gestion des dimensions à évolution lente et rapide.
- Les clés de substitution.
- Gestion de la qualité, fiabilité des données.
- Gestion du contexte non renseigné ou inconnu.
- Les dimensions dégénérées.

Replacer la modélisation dans le cadre du projet décisionnel
- Présentation de la méthode Kimball et Inmon pour l’organisation du projet.
- Les acteurs et livrables du projet.
- Recueil des besoins métier. Formalisation des exigences techniques et d’organisation.
- Identification des priorités et du périmètre pilote.
- Modélisation des informations.
- Choix de l’infrastructure. Implémentation et recette.
- Déploiement et maintenance du modèle.
- Gestion des historiques.

Optimisation physique du modèle
- Gestion de la performance des requêtes.
- Estimation de l’espace disque requis pour le modèle.
- Limitation de la taille occupée par une dimension.
- Agrégation directe de certains éléments dans les tables.
- Dimensions techniques pour assurer la traçabilité des faits.

Alimentation du modèle en étoile
- Contraintes des systèmes opérationnels sources.
- Rôle des ODS dans l’alimentation.
- L’organisation des traitements dans la DSA (Data Staging Area).
- Les différents types d’alimentation (delta, stock, complète).
- Les étapes, les règles et les prérequis de l’alimentation.
- Gestion des rejets.
- Gestion des sources différentes pour l’alimentation d’une dimension ou d’un fait.
- ETL, les solutions d’alimentation disponibles sur le marché.

Restitution des informations d’un modèle en étoile
- Les différents types d’outils au service de la restitution.
- Le marché des outils de restitution.
- Optimisation du modèle pour l’exploration des données.
- Optimisation des index.
- Utilisation du partitionnement des tables.

Conclusion
- Ce qu’il faut retenir.
- Les pièges à éviter.
- Pour aller plus loin.

SESSIONS PROGRAMMEES

 

Accès au calendrier

VALIDATION

Evaluation en fin de session

PEDAGOGIE
Alternance d’exposés et de travaux pratiques
INTERVENANTS
Spécialiste modélisation en étoile

MODALITES PRATIQUES
Durée : 3 jours soit 21 heures avec 7 heures par jour
Prix stagiaire : 1 484,00 € TTC
Horaires : 09h00 – 17h30

Durée:

Laisser un commentaire